
Journal of Computational Physics 227 (2008) 8191–8208
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A second order discontinuous Galerkin fast sweeping method
for Eikonal equations

Fengyan Li a,*,1, Chi-Wang Shu b,2, Yong-Tao Zhang c, Hongkai Zhao d,3

a Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
b Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
c Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, USA
d Department of Mathematics, University of California, Irvine, CA 92697-3875, USA

a r t i c l e i n f o
Article history:
Received 25 August 2007
Received in revised form 23 May 2008
Accepted 27 May 2008
Available online 6 June 2008

Keywords:
Fast sweeping methods
Discontinuous Galerkin finite element
methods
Second order accuracy
Static Hamilton–Jacobi equations
Eikonal equations
0021-9991/$ - see front matter Published by Elsevie
doi:10.1016/j.jcp.2008.05.018

* Corresponding author.
E-mail addresses: lif@rpi.edu (F. Li), shu@dam.br

1 Research supported by NSF Grant DMS-0652481
2 Research supported by NSF Grant DMS-0510345
3 Research partially supported by NSF Grant DMS-
a b s t r a c t

In this paper, we construct a second order fast sweeping method with a discontinuous
Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton–
Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is
built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin
finite element method for directly solving the Hamilton–Jacobi equations, Journal of Com-
putational Physics 223 (2007) 398–415] for the time-dependent Hamilton–Jacobi equa-
tions. The causality property of Eikonal equations is incorporated into the design of this
solver. The resulting local nonlinear system in the Gauss–Seidel iterations is a simple qua-
dratic system and can be solved explicitly. The compactness of the DG method and the fast
sweeping strategy lead to fast convergence of the new scheme for Eikonal equations.
Extensive numerical examples verify efficiency, convergence and second order accuracy
of the proposed method.

Published by Elsevier Inc.
1. Introduction

In this paper, we develop a second order fast sweeping method for numerically solving an important class of static Ham-
ilton–Jacobi (H–J) equations, namely the Eikonal equations
jr/ðxÞj ¼ f ðxÞ; x 2 X n C; ð1:1Þ
/ðxÞ ¼ gðxÞ; x 2 C � X; ð1:2Þ
where X belongs to R2 with C as its subset, e.g., the boundary, and 0 < c < f (x) < C <1 for some positive c, C and f(x) and g(x)
are Lipschitz continuous. Such equations appear in many applications, such as optimal control, differential games, level set
method, image processing, computer vision, and geometric optics.

Since the boundary value problems (1.1), (1.2) are nonlinear first order partial differential equations, we may apply the
classical method of characteristics to solve these equations in phase space; namely, consider the gradient components as
independent variables and solve ODE systems to follow the propagation of characteristics. Although the characteristics
may never intersect in phase space, their projection into physical space may intersect so that the solution in physical space
is not uniquely defined at these intersections. By mimicking the entropy condition for hyperbolic conservation laws to single
r Inc.

own.edu (C.-W. Shu), yzhang10@nd.edu (Y.-T. Zhang), zhao@math.uci.edu (H. Zhao).
.
.
0513073, ONR Grant N00014-02-1-0090 and DARPA Grant N00014-02-1-0603.

mailto:lif@rpi.edu
mailto:shu@dam.brown.edu
mailto:yzhang10@nd.edu
mailto:zhao@math.uci.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


8192 F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208
out a physically relevant solution, Crandall and Lions [16] introduced the concept of viscosity solutions for H–J equations so
that a unique global weak solution can be defined for such first order nonlinear equations. Moreover, monotone finite dif-
ference schemes are developed to compute such viscosity solutions stably.

There are mainly two classes of numerical methods for solving static H–J equations. The first class of numerical methods
is based on reformulating the equations into suitable time-dependent problems. Osher [32] provides a natural link between
static and time-dependent H–J equations by using the level-set idea and thus raising the problem one-dimensional higher. In
the control framework, a semi-Lagrangian scheme is obtained for H–J equations by discretizing in time the dynamic pro-
gramming principle [19,20]. Another approach to obtain a ‘‘time” dependent H–J equation from the static H–J equation is
using the so called paraxial formulation in which a preferred spatial direction is assumed in the characteristic propagation
[21,17,29,36,37]. High order numerical schemes are well developed for the time-dependent H–J equation on structured and
unstructured meshes [34,25,51,24,33,7,26,31,35,1,3,4,6,8]; see a recent review on high order numerical methods for time-
dependent H–J equations by Shu [46]. Due to the finite speed of propagation and the CFL condition for the discrete time step
size, the number of time steps has to be of the same order as that for one of the spatial dimensions so that the solution con-
verges in the entire domain.

The other class of numerical methods for static H–J equations is to treat the problem as a stationary boundary value prob-
lem: discretize the problem into a system of nonlinear equations and design an efficient numerical algorithm to solve the
system. Among such methods are the fast marching method and the fast sweeping method. The fast marching method
[48,43,22,44,45] is based on the Dijkstra’s algorithm [18]. The solution is updated by following the causality in a sequential
way; i.e., the solution is updated pointwise in the order that the solution is strictly increasing (decreasing); hence two essen-
tial ingredients are needed in the algorithm: an upwind difference scheme and a heap-sort algorithm. The resulting complex-
ity of the fast marching method is of order O(N logN) for N grid points, where the logN factor comes from the heap-sort
algorithm. Recently, an O(N) implementation of the fast marching algorithm for solving Eikonal equations is developed in
[50]. The improvement is achieved by introducing the untidy priority queue, obtained via a quantization of the priorities
in the marching computation. However, the numerical solution obtained by this algorithm is not an exact solution to the
discrete system due to quantization. The extra error introduced must be controlled to be at the same order as the numerical
error of the discretization scheme. It is shown in [40] that the complexity of this algorithm is O(fmax/fminN) in order to achieve
an accuracy that is independent of the variation of f(x). In the fast sweeping method [5,55,47,54,27,28,53,38,39,52], Gauss–
Seidel iterations with alternating orderings is combined with upwind finite differences. In contrast to the fast marching
method, the fast sweeping method follows the causality along characteristics in a parallel way; i.e., all characteristics are
divided into a finite number of groups according to their directions and each Gauss–Seidel iteration with a specific sweeping
ordering covers a group of characteristics simultaneously; no heap-sort is needed. The fast sweeping method is optimal in
the sense that a finite number of iterations is needed [54], so that the complexity of the algorithm is O(N) for a total of N grid
points, although the constant in the complexity depends on the equation. The algorithm is extremely simple to implement.
Moreover, the iterative framework is more flexible for general equations and high order methods.

The high order finite difference type fast sweeping method developed in [53] provides a quite general framework, and it is
easy to incorporate any order of accuracy and any type of numerical Hamiltonian into the framework. Much faster conver-
gence speed than that by the time-marching approach can be achieved. Due to the wide stencil of the high order finite dif-
ference approximation to the derivatives, some downwind information is used and the computational complexity of high
order finite difference type fast sweeping methods is slightly more than linear.

Discontinuous Galerkin (DG) methods, on the other hand, can achieve high order accuracy by using very compact stencil.
In this paper, we develop a second order fast sweeping method based on a DG local solver for an important class of static H–J
equations, namely the Eikonal equations. A very fast convergence speed is observed in the numerical experiments.

The DG method is a class of finite element methods, using discontinuous piecewise polynomials as approximations for
solutions and test functions. The main difference between the DG method and the finite difference or finite volume method
is that the former stores and solves for a complete polynomial in each cell, while the latter stores and solves for only one
piece of information (the point value for the finite difference scheme and the cell average for the finite volume scheme)
in each cell, and it must resort to a reconstruction or interpolation using a wide stencil of neighboring cells in order to
achieve higher order accuracy. The DG method was first designed as a method for solving hyperbolic conservation laws con-
taining only first order spatial derivatives, e.g. Reed and Hill [42] for solving linear equations, and Cockburn et al.
[12,11,10,13] for solving nonlinear equations. In recent years the DG method has also been extended to solve many other
nonlinear PDEs such as the convection– diffusion equations [14], KdV type dispersive wave equations [49], etc. Even though
the approximation spaces of the DG method consist of discontinuous functions, the DG method can also be used to approx-
imate continuous and even smooth solutions like in elliptic equations. The key point is that discontinuities at the cell bound-
ary are automatically controlled to be consistent with the approximation error inside the cell for a well designed DG method.
We refer to [15,2] for more details about DG methods.

There are mainly two types of DG methods for solving H–J equations. One was originally proposed in [24,23] which is
based on the observation that the gradient of the solution / of the H–J equations satisfies a hyperbolic system. The DG meth-
od combined with a least squares procedure, is then applied to solve the system to get the gradient of /. The missing con-
stant in / is further recovered through the original equation. This method is later reinterpreted and simplified in [30] by
using the piecewise curl-free solution space in DG method. In another recent work on DG method for H–J equation [9],
the solution / is solved directly. This method is more desirable in the sense that the derived hyperbolic system for r/ in



F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208 8193
[24,30] involves more unknown functions than the original scalar H–J equation which is solved directly in [9]. Moreover the
solutions of H–J equations generally are smoother than those of the conservations laws.

Based on the DG discretization in [9], in this paper, we develop a second order fast sweeping method for solving Eikonal
equations by incorporating the causality property of these equations into the DG local solver. The resulting local nonlinear
system in the Gauss–Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG
method and the fast sweeping strategy lead to a very fast convergence of the new scheme for Eikonal equations. The rest of
the paper is organized as follows. The algorithm is developed in Section 2, and numerical examples are given in Section 3 to
demonstrate the accuracy and the fast convergence of the method. Concluding remarks are given in Section 4.
2. Numerical formulation

Let q =rx/ and HðqÞ ¼ jqj � f ðxÞ; q 2 R2, then the characteristic equations of the Eikonal equation (1.1), (1.2) are
_x ¼ rqH ¼ q
f
; ð2:1Þ

_q ¼ rxf ; ð2:2Þ
_/ ¼ rx/ � _x ¼ q � rqH ¼ f ðxÞ > 0: ð2:3Þ
One can see that / is increasing along the characteristics, which is an important component in the design of the efficient
methods for solving (1.1), (1.2).

One of the key ingredients in designing a fast sweeping method is to design a local solver, which expresses the value at
the standing mesh point in terms of its neighboring values, and (1) it is consistent with the causality of the PDE and is able to
deal with possible discontinuities in the derivatives, and (2) the resulting nonlinear equation can be solved efficiently during
the Gauss–Seidel iterations. The second order local solver developed in this paper is based on the second type discontinuous
Galerkin method [9] reviewed in the introduction. The main idea will be presented for the cases with rectangular meshes.

We start with a partition of X = [16i6I,16j6JIij where Iij = Ii � Jj and Ii = [xi�1/2, xi+1/2], Jj = [yj�1/2,yj+1/2]. The centers of Ii, Jj are
denoted by xi ¼ 1

2 ðxi�1=2 þ xiþ1=2Þ and yj ¼ 1
2 ðyj�1=2 þ yjþ1=2Þ, and the lengths of Ii, Jj are denoted by Dxi = xi+1/2 � xi�1/2 and

Dyj = yj+1/2 � yj�1/2. In this paper, we take Dxi = Dyj = h for simplicity of the presentation. We further define the piecewise
linear approximation space as
V1
h ¼ fv : vjIij

2 P1ðIijÞ;8i; jg;
where P1(Iij) is the set of linear polynomials on Iij. Following the idea of the method developed in [9], a numerical scheme for
(1.1) can be formulated as follows: find /h 2 V1

h , such that
Z
Iij

jr/hjwhðx; yÞdxdyþ ar;ij

Z
Jj

½/h� xiþ1
2
; y

� �
wh x�iþ1

2
; y

� �
dyþ al;ij

Z
Jj

½/h� xi�1
2
; y

� �
wh xþ

i�1
2
; y

� �
dy

þ at;ij

Z
Ii

½/h� x; yjþ1
2

� �
wh x; y�jþ1

2

� �
dxþ ab;ij

Z
Ii

½/h� x; yj�1
2

� �
wh x; yþ

j�1
2

� �
dx

¼
Z

Iij

f ðx; yÞwhðx; yÞdxdy; 8i; j; 8wh 2 :V1
h ð2:4Þ
Let us now explain the notations in (2.4). For the piecewise smooth function /h 2 V1
h; ½/h� denotes the jump of /h across the

cell interface which is defined horizontally by ½/h�ðxiþ1
2
; �Þ ¼ /hðxþiþ1

2
; �Þ � /hðx�iþ1

2
; �Þ;8i and vertically by

½/h�ð�; yjþ1
2
Þ ¼ /hð�; yþjþ1

2
Þ � /hð�; y�jþ1

2
Þ;8j. Here /hðxþiþ1

2
; yÞ ¼ /hjIiþ1;j

ðxiþ1
2
; yÞ;/hðx�iþ1

2
; yÞ ¼ /hjIij

ðxiþ1
2
; yÞ for y 2 Jj, and

/hðx; yþjþ1
2
Þ ¼ /hjIi;jþ1

ðx; yjþ1
2
Þ;/hðx; y�jþ1

2
Þ ¼ /hjIij

ðx; yjþ1
2
Þ for x 2 Ii. ar,ij,al,ij,at,ij, ab,ij are constants which only depend on the numer-

ical solutions in the neighboring cells of Iij, and they are one of the important components of the local solver. By properly
choosing these functions, we expect that the formulation (2.4) is not only accurate and stable, but also enforces the causality
of the Eikonal equation therefore making it possible to design an efficient fast sweeping algorithm for solving (1.1), (1.2).

The piecewise linear approximation /hjIij
can be written as /hjIij

¼ �/ij þ uijXi þ vijYj, where �/ij;uij; vij are the unknowns, and
Xi ¼ x�xi

h ;Yj ¼
y�yj

h . Note that �/ij is the cell average of /h over Iij.
With the consideration of the causality of the Eikonal equation (1.1), (1.2), we choose the constants ar,ij, al,ij, at,ij, ab,ij in the

formulation (2.4) as following:
al;ij ¼
maxð0;ui�1;j=ðhfi�1;jÞÞ when �/i�1;j 6

�/iþ1;j;

0 when �/i�1;j > �/iþ1;j;

(
ð2:5Þ

ar;ij ¼
0 when �/i�1;j 6

�/iþ1;j;

minð0;uiþ1;j=ðhfiþ1;jÞÞ when �/i�1;j > �/iþ1;j;

(
ð2:6Þ



8194 F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208
ab;ij ¼
maxð0; vi;j�1=ðhfi;j�1ÞÞ when �/i;j�1 6

�/i;jþ1;

0 when �/i;j�1 > �/i;jþ1;

(
ð2:7Þ

at;ij ¼
0 when �/i;j�1 6

�/i;jþ1;

minð0; vi;jþ1=ðhfi;jþ1ÞÞ when �/i;j�1 > �/i;jþ1;

(
ð2:8Þ
where fi,j = f(xi,yj). If we denote H1 ¼ oH
o/x

and H2 ¼ oH
o/y

, one would notice that the constants ar,ij,al,ij, at,ij,ab,ij are approximations
of H1(r/h) and H2(r/h) in the four neighboring cells of Iij, with min and max operations to enforce the consistency of the
causality. For instance when �/i�1;j 6

�/iþ1;j and �/i;j�1 6
�/i;jþ1, that is when the information is propagating from the bottom-left

to the top-right in the neighborhood of the cell Iij, we expect the causality consistency that
H1ðr/hÞjIi�1;j

� ui�1;j=ðhfi�1;jÞ > 0;H2ðr/hÞjIi;j�1
� vi;j�1=ðhfi;j�1Þ > 0 for the current numerical solution in neighboring cells Ii�1,j

and Ii,j�1. So if this holds, al,ij and ab, ij will be non-zeros and the scheme (2.4) becomes
Z
Iij

jr/hjwhðx; yÞdxdyþ al;ij

Z
Jj

½/h� xi�1
2
; y

� �
wh xþ

i�1
2
; y

� �
dyþ ab;ij

Z
Ii

½/h� x; yj�1
2

� �
wh x; yþ

j�1
2

� �
dx

¼
Z

Iij

f ðx; yÞwhðx; yÞdxdy; 8i; j; 8wh 2 V1
h: ð2:9Þ
In other words, the method reflects the fact that the solution is increasing along the characteristics.

Remark 2.1. The choices for al,ij,ar,ij,ab,ij and at,ij in this paper are different from those used in [9]. For any given (i,j), these
functions do not depend on /hjIij

, and this is crucial in order to get a simple local solver for (2.4) which forms a building block
of the fast convergence algorithm, see Sections 2.1 and 3. On the other hand, it is indicated in [9, p. 400] that as long as al,ij is
within O(h) perturbation of H1(r/h(xi�1/2,yj)) (similar argument goes to ar,ij,ab,ij and at,ij), the accuracy developed in [9] is
guaranteed by truncation error analysis and this is confirmed by numerical tests. Our choice of al,ij,ar,ij, ab,ij and at,ij satisfies
such conditions therefore will maintain the accuracy results in [9].

If Iij \ (oXnC) is not empty for some (i,j), we modify (2.5)–(2.8) in this cell to carry out the outflow boundary condition. For
instance in the cell Iij where xiþ1

2
is aligned with the domain boundary and Iij \ C is empty, we take ar,ij = 0. Similar adjustment

is made to al,ij,at,ij, ab,ij.
For any given (i,j), by taking wh = 1,Xi,Yj on Iij and wh = 0 elsewhere, the DG formulation (2.4) can be converted from the

integral form to the following nonlinear algebraic system:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

ij þ v2
ij

q
þ cij

�/ij þ bijuij þ kijvij ¼ R1;ij; ð2:10Þ

12bij
�/ij þ fijuij ¼ R2;ij; ð2:11Þ

12kij
�/ij þ gijvij ¼ R3;ij; ð2:12Þ
where
bij ¼ �
1
2
ðar;ij þ al;ijÞ; kij ¼ �

1
2
ðat;ij þ ab;ijÞ;

cij ¼ al;ij � ar;ij þ ab;ij � at;ij;

fij ¼ �3ar;ij þ 3al;ij � at;ij þ ab;ij;

gij ¼ �3at;ij þ 3ab;ij � ar;ij þ al;ij
and
R1;ij ¼
1
h

Z
Iij

f ðx; yÞdxdy� ar;ij
�/iþ1;j �

1
2

uiþ1;j

� �
þ al;ij

�/i�1;j þ
1
2

ui�1;j

� �

� at;ij
�/i;jþ1 �

1
2

vi;jþ1

� �
þ ab;ij

�/i;j�1 þ
1
2

vi;j�1

� �
;

R2;ij ¼
12
h

Z
Iij

f ðx; yÞXidxdy� 6ar;ij
�/iþ1;j �

1
2

uiþ1;j

� �
� 6al;ij

�/i�1;j þ
1
2

ui�1;j

� �
� at;ijui;jþ1 þ ab;ijui;j�1;

R3;ij ¼
12
h

Z
Iij

f ðx; yÞYjdxdy� 6at;ij
�/i;jþ1 �

1
2

vi;jþ1

� �
� 6ab;ij

�/i;j�1 þ
1
2

vi;j�1

� �
� ar;ijviþ1;j þ al;ijvi�1;j:
To solve the coupled nonlinear system (2.10)–(2.12) with 1 6 i 6 I,1 6 j 6 J efficiently, we are going to propose a fast
sweeping method which uses block Gauss–Seidel iterations with alternating directions of sweepings. Based on the basic
steps of the fast sweeping methods in [47,54], we first need to define a local solver to compute /h in Iij based on the DG dis-
cretization (2.10)–(2.12), provided that the solution in the remaining region is known.



F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208 8195
2.1. DG local solver

Note that bij,kij,cij,fij, gij in (2.10)–(2.12) are functions of ar,ij,al,ij,at,ij, and ab,ij defined in (2.5)–(2.8), which are independent
of /hjIij

. In addition, R1,ij,R2,ij and R3,ij in (2.10)–(2.12) are independent of /hjIij
. These indicate that the system of Eqs. (2.10)–

(2.12) provides a local representation of ð�/ij;uij; vijÞ in terms of the unknown solution /h in the neighboring cells and the
source data. Moreover, (2.10)–(2.12) is quadratic with respect to ð�/ij;uij; vijÞ.

Given (i,j), let /new
h jIij

¼ �/new
ij þ unew

ij Xi þ vnew
ij Yj denote the candidate for the update of the numerical solution /h in Iij and

/hjIkl
¼ �/kl þ uklXi þ vklYj denote the current numerical solution in any (k,l)th cell, then we compute /new

h according to the fol-
lowing formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
unew

ij

� �2
þ vnew

ij

� �2
r

þ cij
�/new

ij þ biju
new
ij þ kijvnew

ij ¼ R1;ij; ð2:13Þ

12bij
�/new

ij þ fiju
new
ij ¼ R2;ij; ð2:14Þ

12kij
�/new

ij þ gijv
new
ij ¼ R3;ij: ð2:15Þ
Note that bij,kij,cij,fij, gij, R1,ij, R2,ij, R3,ij do not depend on the numerical solution in Iij, hence (2.13)–(2.15) defines a quadratic
system for ð�/new

ij ;unew
ij ; vnew

ij Þ which can be solved explicitly. We can also show that the parameters cij,fij,gij are either all zero
or all positive. Since the system (2.13)–(2.15) in principle can have none or two sets of solutions of ð�/new

ij ;unew
ij ; vnew

ij Þ, we take
the following strategy to decide when to reject or to accept the candidates of ð�/new

ij ;unew
ij ; vnew

ij Þ computed from (2.13)–(2.15),
based on the causality of the Eikonal equation

1. When cij,fij,gij are all zero, we will not update the solution in this cell.
2. When cij,fij,gij are all positive, if we get from (2.13)–(2.15)
� two sets of real solutions ð�/new

ij ;unew
ij ; vnew

ij Þ: then update /hjIij
with /new

h jIij
if the following conditions are satisfied:
�/new
ij P �/i�1;j and unew

ij P 0 if al;ij > 0;
�/new

ij P �/iþ1;j and unew
ij 6 0 if ar;ij < 0;

�/new
ij P �/i;j�1 and vnew

ij P 0 if ab;ij > 0;
�/new

ij P �/i;jþ1 and vnew
ij 6 0 if at;ij < 0;

8>>>>><
>>>>>:

ð2:16Þ

If both sets of the solutions satisfy the above conditions, choose the one with the smaller value of �/new
ij ;

� two sets of complex solutions: we will not update the solution in this cell.

Remark 2.2. The strategy regarding accepting or rejecting the candidate solutions in (2.16) is to ensure the consistency of
the causality. For example, if we follow the discussion after the definition of al,ij to at,ij in (2.5)–(2.8) when the information is
propagating from the bottom-left to the top-right in the neighborhood of the cell Iij, we expect al,ij > 0 and ab,ij > 0, therefore
we accept the candidate solution ð�/new

ij ;unew
ij ; vnew

ij Þwhich is consistent with the causality: �/new
ij P �/i�1;j; �/new

ij P �/i;j�1 as well
as unew

ij P 0; vnew
ij P 0. That is, along the characteristic the solution is nondecreasing. Note that comparing average values in

cells does not necessarily give the correct information of the characteristics or monotonicity of the solution. That explains
why oscillations can occur (see Example 7 in Section 3) if the derivative criterion is not used, i.e., the average is monotone
even if the solution is not. However, the sign of derivatives become subtle near local extrema or shocks. So in (2.16) we use
both the cell average and the derivatives of the solution to decide the acceptance or the rejection of a candidate for the
solution update to ensure the causality consistency.
2.2. Hybrid DG local solver

With the local solver defined in the previous section as the building block, the numerical experiments show that the
straightforward application of the fast sweeping method as in [47,54] based on the DG discretization (2.4) may not produce
satisfactory results all the time. There are two issues that we need to pay more attention. The first is the initial data. In gen-
eral iterative methods for nonlinear problems need a good initial guess for convergence, in particular when they are based on
high order discretizations. On the other hand, the fast sweeping method based on the first order Godunov scheme has been
shown monotone, convergent and efficient for any initial data that are super-solution (or sub-solution) of the true viscosity
solution [54]. So we use the first order scheme to provide a good initial guess for our high order method just as in [53], see
Section 2.3 for the complete description.

The second issue is that we enforce a quite strong causality condition (2.16) when we update the value in a cell using the
local DG solver. Near shocks, where characteristics intersect, or near points where /x or /y are close to zero, causality issue
becomes more subtle. The local DG solver may not be able to provide a solution satisfying (2.16). Hence in those cells where



8196 F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208
the second order local DG solver can not provide a solution we switch back to a first order finite difference type Godunov
scheme. The hope is that more accurate information propagated through the DG solver will be felt at all points.

However, those conditions in (2.16) will enforce propagation of information in the right direction and this will signifi-
cantly reduce the number of iterations of our final algorithm in Section 2.4. For example, such conditions were not used
in [53] and more iterations are needed in general.

One concern for hybridizing the two local solvers is a possible reduction of the accuracy. In practice the first order local
solver is only used rarely as explained above. This phenomenon is observed in our numerical examples. Here we classify the
convergence of our method into three cases.

C1: The first order finite difference type local solver is never used.
C2: The first order finite difference type local solver is used before the iterations converge. By the time the iterations con-

verge, the first order local solver is not used.
C3: The first order finite difference type local solver is used in the whole process of the computation. By the time the

iterations converge, the first order local solver is used in certain cells and the solution is not further updated if
the iterations continue. The ratio between the number of the cells in which the first order local solver is used
and the number of the total cells is decreasing when h decreases, and the numerical evidence shows that this ratio
is about O(h).
Remark 2.3. Numerical examples show that in the case C3 described above, the first order local solver is used in O(h)
percentage of the total number of cells which are in the neighborhood of the shock location, i.e., where characteristics
intersect, and hence it does not pollute solutions in other region. Therefore the method still achieves second order accuracy
in the L1 norm.

The hybrid local solver is defined as follows: given (i,j)

(1) When the DG local solver defined in the previous section provides an update in Iij, the update is accepted.
(2) When the DG local solver defined in the previous section provides no update in Iij, the following finite difference based

local solver is used instead: let
a ¼minð�/i�1;j; �/iþ1;jÞ; b ¼minð�/i;j�1; �/i;jþ1Þ; fi;j ¼ f ðxi; yjÞ;

we then update the solution in the cell Iij as the following:
� If ja � bjP fi,jh, then

�/new
i;j ¼minða; bÞ þ fi;jh

and

unew
ij ¼ �/new

ij � �/i�1;j; vnew
ij ¼ 0 if a ¼minða; bÞ ¼ �/i�1;j < �/iþ1;j;

unew
ij ¼ �/iþ1;j � �/new

ij ; vnew
ij ¼ 0 if a ¼minða; bÞ ¼ �/iþ1;j 6

�/i�1;j;

unew
ij ¼ 0; vnew

ij ¼ �/new
ij � �/i;j�1 if b ¼minða; bÞ ¼ �/i;j�1 < �/i;jþ1;

unew
ij ¼ 0; vnew

ij ¼ �/i;jþ1 � �/new
ij if b ¼minða; bÞ ¼ �/i;jþ1 6

�/i;j�1

8>>>>><
>>>>>:

� If ja � bj < fi,jh, then

�/new
i;j ¼

aþ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f 2

i;jh
2 � ða� bÞ2

q
2

and

unew
ij ¼

�/new
ij � �/i�1;j if �/i�1;j < �/iþ1;j;

�/iþ1;j � �/new
ij if �/i�1;j P �/iþ1;j;

(

vnew
ij ¼

�/new
ij � �/i;j�1 if �/i;j�1 < �/i;jþ1;

�/i;jþ1 � �/new
ij if �/i;j�1 P �/i;jþ1:

(

Remark 2.4. When the first order finite difference based local solver is used in this hybrid local solver, the way to com-
pute the update for �/ij is the same as that used in [54]; and the way to compute the updates for uij and vij is based on how
the derivatives /x and /y in the Eikonal equation are approximated in the Godunov finite difference discretization as in
[54].



F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208 8197
2.3. Initial guess and boundary condition

In order to complete the fast sweeping algorithm based on the hybrid DG local solver defined above, we also need to spec-
ify how to impose the boundary conditions and how to set up the initial guess for the iteration.

To assign the boundary conditions, we pre-assign the solution in the boundary cells (certain cells around C, which will be
specified in Section 3 for each example), and the solution in these cells will not be updated during the iterations. In the
numerical experiments, the following approach is taken: for any Iij which is identified as the boundary cell, /hjIij

2 P1ðIijÞ is
the least squares fit of the exact solution /, satisfying
Jijð/h � /Þ ¼ min
wh2P1ðIijÞ

Jijðwh � /Þ;
where
JijðwÞ ¼ wi�1
2;j�

1
2

� �2
þ wi�1

2;jþ
1
2

� �2
þ wiþ1

2;j�
1
2

� �2
þ wiþ1

2;jþ
1
2

� �2
and wi�1
2;j�

1
2

denotes wðxi�1
2
; yj�1

2
Þ. One can easily derive the following explicit formula for computing this least squares fit

/hjIij
¼ �/ij þ uijXi þ vijYj from the exact solution /
�/ij ¼
1
4

/i�1
2;j�

1
2
þ /i�1

2;jþ
1
2
þ /iþ1

2;j�
1
2
þ /iþ1

2;jþ
1
2

� �
; ð2:17Þ

uij ¼
1
2

/iþ1
2;j�

1
2
� /i�1

2;j�
1
2
þ /iþ1

2;jþ
1
2
� /i�1

2;jþ
1
2

� �
; ð2:18Þ

vij ¼
1
2

/i�1
2;jþ

1
2
� /i�1

2;j�
1
2
þ /iþ1

2;jþ
1
2
� /iþ1

2;j�
1
2

� �
: ð2:19Þ
This procedure provides second order accurate boundary conditions provided that / is sufficiently smooth.

Remark 2.5. In real implementation the exact solution is known only along some curves or at some isolated points. One can
use (a) interpolation or extrapolation, or (b) ray tracing method, or (c) a first order approximation of the solution on a finer
mesh, in a neighborhood of the boundary C to provide the second order boundary condition approximation. Then the
method developed here can be used to compute the solution efficiently in the whole domain.

Once the boundary condition is prescribed in the boundary cells, the initial guess of the numerical solution in the remain-
ing region is given as follows: we compute the first order Godunov finite difference based fast sweeping approximation /FD

[47,54] to / with the unknowns defined at ðxi�1
2
; yj�1

2
Þ for all (i,j), then we take the least squares fit of /FD as the initial guess /h.

That is, /h is computed by replacing / with /FD in (2.17)–(2.19). Note this initial guess is first order accurate.

2.4. Algorithm

Now by combining the hybrid DG local solver, the boundary condition treatment and the initial guess described in Sec-
tions 2.1–2.3 with the block Gauss Seidel iteration with alternating sweeping orderings, we can summarize the main algo-
rithm for solving (1.1), (1.2)

1. Initialization: in the cells around C, assign the least squares fit of the exact solution or approximation solution and the solu-
tion in these cells will not be updated in the iterations; in the remaining region, initialize the solution by the least squares
fit of the solution from the first order finite difference scheme, see Section 2.3.

2. Update /h on Iij by block Gauss Seidel iteration with four alternating sweeping orderings:
ð1Þi ¼ 1 : I; j ¼ 1 : Jð��Þ ð2Þi ¼ I : 1; j ¼ 1 : Jð��Þ;
ð3Þi ¼ I : 1; j ¼ J : 1ð��Þ ð4Þi ¼ 1 : I; j ¼ J : 1ð��Þ:

Solve /hj
new
Iij

by the hybrid DG local solver defined in Section 2.2.
3. Convergence: d > 0 is a given small number. For any sweep, if we denote the solutions before and after the sweep as /old

h

and /new
h , and if
jj/new
h � /old

h jjL1ðXÞ < d; ð2:20Þ

the algorithm converges and stops.
Remark 2.6. The Gauss Seidel iteration we use is block Gauss Seidel as each time the numerical solution in Iij, which contains
three unknowns, is considered for update.

Remark 2.7. We use L1 norm in determining the convergence of the algorithm in (2.20) since this norm is commonly used in
analyzing hyperbolic problems, and it is less affected by the degeneracy in O(h) percentage of the total number of cells.



8198 F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208
3. Numerical examples

In this section, we demonstrate the performance of the algorithm defined in Section 2.4 through some typical two dimen-
sional examples, and d in the stopping criteria is taken as 10�14. The numerical errors in L1 norm, L2 norm and L1 norm are
presented. In order to make a fair comparison among these errors, the following normalization is used:
Table 3
Exampl

n

20
40
80

160
320

The bou
jjwjjL1ðXcÞ ¼
R

Xc
jwðx; yÞjdxdy

jXcj
; jjwjjL2ðXcÞ ¼

R
Xc
jwðx; yÞj2dxdy

jXcj

 !1=2

;

where Xc is the domain in which the errors are computed, and jXcj denotes the area of Xc. We also report which situation
among C1, C2 and C3 described in Section 2.2 happens for each example. In all tables, # stands for the number of sweeps
needed for the convergence, and it does not include the sweep in which the convergence is noticed. For those examples
whose exact solutions are known, boundary conditions are given by the least squares fit of the exact solutions as described
in Section 2.3.

Example 1. X = [�1,1]2, C = {(0,0)} and f(x,y) = 1. The exact solution
/ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

is the distance function from C, and all the characteristics start from the origin and propagate outward along all directions.
Note the origin C is a singularity.

We pre-assign the boundary conditions in a 0.2-length square box around C in which the solution is not updated during
iterations. This is the so-called wrapping technique [53,39] which is used in order to correctly measure the order of accuracy
for the point source problem. The numerical errors and convergence orders are computed in the domain without the 0.2-
length box around C and the results are reported in Table 3.1. The same table also includes the number of sweeps needed for
the convergence, and indicates which situation among C1, C2 and C3 described in Section 2.2 happens in the computation.
The results show that the finite difference based local solver is never used through the whole computation (except when
n = 20), and the proposed scheme is second order accurate. Only four sweeps are needed for the convergence.

As a comparison, in Table 3.2 we include the results by the first order Godunov finite difference based fast sweeping
method [54]. One can see that our proposed algorithm provides more accurate approximations. Since the second order local
solver is more expensive than the first order local solver in one cell, we further examine the efficiency of these two methods
by studying the relation between the number of the involved �,/, and ffip operations and the accuracy of the method. We
assume the dominating computational cost is in the iterations (including the iterations in order to get the first order initial
guess), therefore we choose not to count the operations related to pre-processing and post-processing the data to simplify
the comparison. Note that both methods need the same number of sweeps for the iterations to converge in this example. In
Fig. 3.1 we plot the operations per sweep versus the L1 errors in /. The operations in initializing the proposed algorithm using
the first order method has also been taken into account. It shows that in order to achieve a relatively low accuracy (lower
than 10�2 in L1 error for this example), the first order scheme needs fewer operations than the second order algorithm
proposed here. But in order to achieve a better accuracy (higher than 5 � 10�3 in L1 error for this example), the second order
algorithm needs fewer operations than the first order algorithm, and the higher the accuracy we want to achieve, the more
efficient our DG algorithm is compared to the fist order method. We want to point out that the results in Tables 3.1 and 3.2
are computed in different ways. If we take the error in L1 norm as an example, the errors in Table 3.1 for the DG
approximation /h by the proposed algorithm are computed as follows:
jj/� /hjjL1ðXÞ ¼
XI

i¼1

XJ

j¼1

Z
Iij

j/ðx; yÞ � /hðx; yÞjdxdy;
where
R

Iij
j/ðx; yÞ � /hðx; yÞjdxdy is further approximated by Gaussian quadrature which is exact for polynomials of degree at

most 5. For the numerical solution /h resulted from the Godunov finite difference based fast sweeping method, we only
know its values at the grid points (xi�1/2,yj�1/2), therefore the errors in Table 3.2 are computed by
.1
e 1. C = {(0,0)} and f(x,y) = 1

L1 error Order L2 error Order L1 error Order # Type

5.08E-02 – 7.74E-02 – 2.74E-01 – 4 C2
4.28E-03 3.57 8.85E-03 3.13 5.02E-02 2.44 4 C1
4.14E-04 3.37 1.06E-03 3.07 9.28E-03 2.44 4 C1
5.93E-05 2.80 1.56E-04 2.76 1.99E-03 2.22 4 C1
1.04E-05 2.51 2.60E-05 2.59 4.62E-04 2.11 4 C1

ndary condition is pre-assigned in the 0.2-length square box around C, and the errors are computed outside the box. n = 2/h.



Table 3.2
Example 1. C = {(0, 0)} and f(x,y) = 1

n L1 error Order L2 error Order L1 error Order #

20 3.33E-02 – 3.86E-02 – 6.81E-02 – 4
40 1.86E-02 0.84 2.15E-02 0.85 3.79E-02 0.84 4
80 9.90E-03 0.91 1.14E-02 0.91 2.02E-02 0.91 4

160 5.12E-03 0.95 5.89E-03 0.95 1.04E-02 0.96 4
320 2.60E-03 0.98 2.99E-03 0.98 5.23E-03 0.99 4

The boundary condition is pre-assigned in the 0.2-length square box around C. The computation is by the first order Godunov finite difference fast sweeping
method. n = 2/h.

103 104 105 106 107
10—5

10—4

10—3

10—2

10—1

Operations per sweep

L1  
er

ro
r

DG solver
FD solver

Fig. 3.1. Example 1. Operations count, C, per sweep versus the L1 errors in /. The operations per sweep when the first order finite difference solver is used:
C ¼ C1n2; the operations per sweep when the second order DG solver is used (including obtaining the first order initial guess): C ¼ ðC1 þ C2Þn2. Here
C1 = 6,C2 = 76 are the operations involved per element by the first order finite difference local solver and the DG local solver respectively. ‘‘	” and ‘‘
” along
the curves are for different n with n = 20,40,80,160,320 from left to right. Operations including 
; =; ffip are counted without + and �.

F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208 8199
jj/� /hjjL1ðXÞ �
XI

i¼1

XJ

j¼1

j/ðxi�1=2; yj�1=2Þ � /hðxi�1=2; yj�1=2ÞjDxiDyj:
This note also applies to Examples 4 and 6 when similar comparison is made.

Example 2. X = [�1,1]2, C = {(0,0)}, and
f ðx; yÞ ¼ p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 p

2
x

� �
þ sin2 p

2
y

� �r
The exact solution is
/ðx; yÞ ¼ � cos
p
2

x
� �

� cos
p
2

y
� �
Though the solution is smooth, f(0,0) = 0 indicates that the equation is degenerate at the origin, i.e., the propagating speed is
infinity.

In the computation, the boundary condition is pre-assigned either in a fixed region around C (0.2 � 0.2 square box) or in a
fixed number of cells around C (4h � 4h square box). The results collected in Table 3.3 show that four sweeps are needed for
the convergence and the second order convergence rate is achieved. The slightly lower convergence orders observed in the
second part of Table 3.3, when only a region of size O(h) is taken out near the source, is due to the degeneracy of the Eikonal
equation (f(0,0) = 0 for this example) or the singularity of the solution at source point. Any numerical scheme will create
larger errors near the singularity and the error incurred near the source point will propagate to and pollute the computation
domain [54,53,39]. For this example the finite difference type local solver is used before the iterations converge and it is
never used afterward, i.e. case 2 as discussed in Section 2.2.



Table 3.3
Example 2. The exact solution is /ðx; yÞ ¼ � cosðp2 xÞ � cosðp2 yÞ on [�1,1]2 with C = {(0, 0)}

n L1 error Order L2 error Order L1 error Order # Type

L = 0.2
20 7.00E-03 – 1.29E-02 – 6.48E-02 – 4 C1
40 7.83E-04 3.16 1.53E-03 3.08 1.23E-02 2.40 4 C2
80 1.56E-04 2.33 2.78E-04 2.46 2.96E-03 2.05 4 C2

160 3.38E-05 2.20 5.54E-05 2.33 7.34E-04 2.01 4 C2
320 7.73E-06 2.13 1.17E-05 2.24 1.83E-04 2.00 4 C2

L = 4h
20 2.10E-03 – 3.73E-03 2.64E-02 – 4 C1
40 7.83E-04 1.43 1.53E-03 1.29 1.23E-02 1.11 4 C2
80 2.95E-04 1.41 5.75E-04 1.41 5.10E-03 1.26 4 C2

160 1.01E-04 1.54 1.98E-04 1.54 1.98E-03 1.37 4 C2
320 3.23E-05 1.65 6.34E-05 1.64 7.27E-04 1.45 4 C2

The boundary condition is pre-assigned in the L-length square box around C. n = 2/h.

Table 3.4
Example 2. Convergence of the gradient of /h to r/

n L1 error Order L2 error Order L1 error Order

L = 0.2
20 1.36E-01 – 1.47E-01 – 4.54E-01 –
40 5.21E-02 1.38 5.42E-02 1.44 2.11E-01 1.11
80 2.41E-02 1.11 2.40E-02 1.18 1.06E-01 0.99

160 1.16E-02 1.05 1.12E-02 1.10 5.29E-02 1.00
320 5.68E-03 1.03 5.38E-03 1.06 2.65E-02 1.00

L = 4h
20 1.02E-01 – 1.03E-01 3.36E-01 –
40 5.21E-02 0.97 5.42E-02 0.92 2.11E-01 0.67
80 2.59E-02 1.01 2.75E-02 0.98 1.27E-01 0.73

160 1.27E-02 1.03 1.36E-02 1.02 7.41E-02 0.78
320 6.19E-03 1.04 6.56E-03 1.05 4.24E-02 0.81

The exact solution is /ðx; yÞ ¼ � cosðp2 xÞ � cosðp2 yÞ on [�1,1]2 with C = {(0,0)}. The boundary condition is pre-assigned in the L-length square box around C.
n = 2/h.

8200 F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208
Since our proposed algorithm is second order accurate and /h in each element is a polynomial function, the piecewise
defined gradient of /h naturally provides a first order approximation for the gradient of the exact solution /, see Table 3.4.

Example 3. X = [�1,1]2, C is a circle with the center (0,0) and the radius Rs = 0.5, and f(x,y) = 1. The exact solution
/ðx; yÞ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� Rsj
is the distance function from C.
The boundary condition is pre-assigned in the 2

ffiffiffi
2
p

h-distanced cells from C. The errors, convergence orders and the
number of sweeps needed for convergence are included in Table 3.5. For this example, the boundary C is smooth and
separates the interior and exterior regions. The origin (0,0) is the only singularity of the solution. The full second order
convergence rate can be seen only when the errors are measured away from the origin. Four sweeps are needed for the
convergence. The first order finite difference based local solver is used before the convergence is achieved when n = 160,320,
and it is never used afterward.

Example 4. X = [�1,1]2, and C consists of two circles with centers (0.5,0.5),(�0.5,�0.5) and the radius Rs = 0.3, and f(x,y) = 1.
The exact solution is
/ðx; yÞ ¼min j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
� Rsj; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ ðyþ 0:5Þ2

q
� Rsj

� �
;

which is the distance function from C.
For this example, the centers of two circles and {(x,y): x+y=0}, the equally distanced line from the two circles C are

singularities, i.e., where characteristics intersect. In the computation, the boundary condition is pre-assigned in the 2
ffiffiffi
2
p

h-
distanced cells from C. The errors, convergence orders and the number of sweeps needed for convergence are included in
Table 3.6. Not like in all the previous examples, the first order finite difference local solver is used all the way till the



Table 3.6
Example 4. C consists of two circles with centers (0.5, 0.5), (�0.5,�0.5) and the radius Rs = 0.3. f(x,y) = 1

n L1 error Order L2 error Order L1 error Order # Type �

Global error
20 2.75E-03 – 6.80E-03 – 7.20E-02 – 6 C3 1.000%
40 6.59E-04 2.06 1.97E-03 1.79 3.66E-02 0.98 6 C3 1.250%
80 1.63E-04 2.02 6.30E-04 1.64 1.84E-02 0.99 6 C3 0.438%

160 4.08E-05 2.00 2.11E-04 1.58 9.25E-03 0.99 6 C3 0.250%
320 1.03E-05 1.99 7.26E-05 1.54 4.63E-03 1.00 6 C3 0.137%

Regional error
20 9.74E-04 – 1.14E-03 – 3.16E-03 – 6 C3 1.000%
40 3.49E-04 1.48 4.74E-04 1.27 3.84E-03 – 6 C3 1.250%
80 9.09E-05 1.94 1.24E-04 1.93 9.31E-04 2.04 6 C3 0.438%

160 2.33E-05 1.96 3.23E-05 1.94 2.37E-04 1.97 6 C3 0.250%
320 5.90E-06 1.98 8.29E-06 1.96 6.03E-05 1.97 6 C3 0.137%

The boundary condition is pre-assigned in the cells within 2
ffiffiffi
2
p

h-distance from C. Global error: errors computed outside the boundary condition region;
regional error: errors computed in the cells 2

ffiffiffi
2
p

h distance away from the equally distanced line from the circles, 0.1 distance away from the circle centers,
and outside the boundary condition region. � = the percentage of the cells in which the finite difference type local solver is used by the time the iterations
converge. n = 2/h.

Table 3.5
Example 3. C is a circle centered at (0,0) with radius 0.5. f(x,y) = 1

n L1 error Order L2 error Order L1 error Order # Type

Global error
20 1.07E-03 – 1.73E-03 – 1.73E-02 – 4 C1
40 2.94E-04 1.86 4.65E-04 1.90 8.12E-03 1.09 4 C1
80 7.68E-05 1.93 1.26E-04 1.89 4.03E-03 1.01 4 C1

160 1.98E-05 1.96 3.41E-05 1.88 2.01E-03 1.00 4 C2
320 5.06E-06 1.97 9.22E-06 1.89 1.01E-03 1.00 4 C2

Regional error
20 9.51E-04 – 1.33E-03 – 7.57E-03 – 4 C1
40 2.75E-04 1.79 3.80E-04 1.81 3.88E-03 0.96 4 C1
80 7.18E-05 1.94 9.81E-05 1.95 9.29E-04 2.06 4 C1

160 1.84E-05 1.96 2.55E-05 1.94 2.35E-04 1.98 4 C2
320 4.69E-06 1.97 6.55E-06 1.96 5.97E-05 1.98 4 C2

The boundary condition is pre-assigned in the cells within 2
ffiffiffi
2
p

h-distance from C. Global error: errors computed outside the boundary condition region;
regional error: errors computed outside the boundary condition region and outside the 0.1-length box around the origin. n = 2/h.

F. Li et al. / Journal of Computational Physics 227 (2008) 8191–8208 8201
iterations converge. When the convergence is achieved, the first order local solver is used in some cells along the equally
distanced line {(x,y):x + y = 0} where characteristics intersect. See Fig. 3.2. However, the number of cells in which the first
order finite difference local solver is used is no more than O(h) percentage of the total number of cells. This explains the
second order global convergence rate in L1 norm and first order global convergence rate in L1. On the other hand, the full
second order convergence rate can be seen when the errors are measured away from the centers of the two circles, and the
equally distanced line from these two circles. It is interesting to note that the singularities at the centers of the two circles are
quite different from the singularities at the equal distance line. At the centers infinite many characteristics from all directions
intersect. On the other hand, the characteristics only intersect pairwise at the equal distance line. So we have an extra
difficulty to resolve infinite many directions of characteristics at the centers. Similar to the point source scenario, a fixed
region has to be taken out near the circle centers to see second order convergence, while only a O(h) neighborhood of the
equal distance line needs to be taken out. Although the characteristics in this example are straight lines, six sweeps are
needed for convergence to machine zero instead of four sweeps due to the presence of shocks. Closer examination shows
that by the end of the fourth sweep, the solution is settled everywhere except in a few cells near the shock location. Such
cells are among those which eventu